Graphdiyne oxide doped SnO<sub>2</sub>electron transport layer for high performance perovskite solar cells
نویسندگان
چکیده
Graphdiyne oxide-doped SnO 2 is applied as a novel electron transfer layer for the preparation of high-performance perovskite devices.
منابع مشابه
High efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer
Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...
متن کاملHigh Performance Perovskite Solar Cells
Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, sh...
متن کاملPlanar perovskite solar cells using fullerene C70 as electron selective transport layer
Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...
متن کاملDoped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells
0.1016/j.nanoen.2 lsevier Ltd. All rig thor. [email protected] ( Abstract We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduc...
متن کاملStable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer
UNLABELLED Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Chemistry Frontiers
سال: 2021
ISSN: ['2052-1537']
DOI: https://doi.org/10.1039/d1qm00592h